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Abstract. We consider the magnetic response of a charged Brownian particle undergoing a 
stochastic birth-death process. The latter simuiates the electron-hole pair production and 
recombination in semiconductors. We obtain non-zero, orbital diamagnetism which can be 
large without violating the Van Leeuwen theorem. 

1. Introduction 

There is a well known theorem due originally to Van Leeuwen (1921) (see also Van 
Vleck 1932) on the absence of orbital diamagnetism in a classical system of charged 
particles in thermodynamic equilibrium. It is rigorous and holds for a completely 
general system Hamiltonian. The essential point of the proof (Pippard 1969, Peierls 
1955) is that the magnetic field B enters the particle Hamiltonian only through the 
minimal replacement of the ith particle momentump, byp, - ( e / c ) A ( r t ) ,  where A is the 
associated vector potential. Now since the partition function involves integration of the 
particle momenta over the entir,e momentum space, the origin of which is trivially 
shifted by A, the latter disappears from the partition function. This implies identically 
zero magnetic susceptibility. This partial tracing over the particle momenta is not 
permitted quantum mechanically because of the non-commutation problem. Here lies 
the origin of the Landau diamagnetism. For the purposes of this paper, two points 
about this classic theorem ought to be noted. Firstly, the proof of the theorem involves 
explicitly the system Hamiltonian which can, of course, be very general; and secondly, it 
makes no appeal to the thermodynamic limit-it holds for finite (bounded) systems. 
There is, however, a physically meaningful and formally well defined situation which is 
not covered by this theorem. This obtains when the charged particles in question are 
not permanent, in that they are being continually created and annihilated on a certain 
relevant timescale T measuring the mean lifetime. An example would be a non- 
degenerate gas of electrons and holes suffering thermal pair production and recom- 
bination in a compensated semiconductor, or in a fluctuating valence system. In the 
language of chemical kinetics such a system may be termed ‘reactive’ (Nicolis and 
Prigogine 1977). Since there is no classical microscopic Hamiltonian describing such a 
process going on in the system in equilibrium, a description in terms of a partition 
function is inadmissible. One often resorts to a mesoscopic level of treatment based on 
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some sort of master rate equation to compute a gross quantity such as the relative 
populations of the reacting species or their velocity distribution. In this paper we 
address ourselves to precisely such a system, idealised in some respects, and calculate its 
response to an external magnetic field of arbitrary strength. Our calculation shows that 
the orbital diamagnetic susceptibility is in general non-zero, and can indeed be very 
large for not too small but finite T.  In the limit T + CO we do recover the result of the Van 
Leeuwen theorem, as we must. At  the very outset, however, we must admit frankly that 
our enquiry at the moment is out of academic curiosity. We are unable to relate it to any 
definite experimental system, though we shall make some suggestions towards the end. 
On the other hand, we believe that our treatment, at the very least, throws considerable 
light on certain rather subtle questions relating to the role of boundary, or confinement, 
which is obscured in this theorem. This has some pedagogic value in itself. For a 
revealing discussion of these points in the quantum mechanical context, reference must 
be made to Pippard (1969). 

2. Model and mathematical treatment 

We shall follow here the natural description of the equilibrium statistical mechanics of 
such a non-Hamiltonian system in terms of the real space-time picture ri la Langevin 
equation. In this picture the lifetime effect as stated above can easily be incorporated by 
superimposing on the particle history a stochastic birth-death process which is sta- 
tionary in time. 

Let us consider the simplest model of a classical system of charged particles, namely 
the Lorentz model in which we ignore all interactions among the particles but retain 
their interaction with any external field. It may be noted, however, that for a classical 
system of charged particles with the usual two-body interaction depending only on the 
inter-particle separation, the total magnetic moment of the system has a vanishing 
Poisson bracket with the two-body interaction part of the system Hamiltonian. This by 
itself implies that for such systems the two-body interactions do not alter the value of 
the magnetic moment, if there is a net magnetic moment at all. In our case the external 
field is a uniform magnetic field B directed along the positive t axis. The system will be 
assumed to be in thermai equilibrium with a bath (the lattice) at temperature T. It is 
sufficient, therefore, to examine the stochastic motion of just one ‘test’ particle moving 
under the influence of the randomly fluctuating bath forces and the external field. 
Further, for reasons of symmetry, we need consider only the motion projected onto a 
plane normal to the magnetic field, i.e. in the xy plane. In order to bring out certain 
points clearly, we shall first consider the case of permanent particles (7  = CO) moving in 
the infinitely extended xy plane, i.e. no boundary or confinement. We then have the 
Langevin equation (Chandrasekhar 1943) 

( l a )  le1 

le I 

mx = - T i  --Bj + f x ( t ) ,  

my = -r$ +-Bi + f y ( f ) ,  

C 

C 

where the random force field fa ( t )  is a Gaussian white noise, i.e. 

(fa (t1.f~ (0) = A & p G  ( t  - t’) (2a 1 
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with a, P = x ,  y. r is the frictional coefficient. The consistency condition for the state of 
equilibrium relates the prefactor A to 

A = 2 k ~ T r .  (2b)  
If we choose to look at the test particle in the course of its evolution at time to (<t, the 
present epoch), it will have a certain velocity 1 = Po, j ,  = io and position x = xo, y = yo, 
say. The condition ( 2 b )  ensures that asymptotically 

(2c)  
as t + 00, or equivalently, as to + -00. The latter implies that the system has been going 
on for an infinite time. The angular bracket (. . .)o denotes the subsemble average over 
the trajectories subject to the initial condition as noted above. This is merely an average 
over all possible trajectories of theparticle starting from the given initial condition. 
Multiplying equation ( l b )  by i ( ~ d - 1 )  and adding to equation ( l a ) ,  we obtain 

as 

$n(P2(t))o = im(y2(t))o = 4kgT 

2 = -pz + F ( t ) ,  (3) 
where t = ( x  +iy),  F ( t )  = ( l / m ) ( f x ( t ) + i f v ( t ) )  and P = (wr-iwc) with w r =  I'/m and 
w c  = Je /B/mc,  the cyclotron frequency. We note that z = x + i y  occurs holomorphically 
in equation (3) and this simplifies the problem considerably. The quantity of interest is 
the magnetic moment 

evaluated in the limit to + -00. The formal solution of equation (3) is 

where we have set zo = 0, which we can do without loss of generality. Recalling from 
equation (2a)  that 

( F ( [ ) F * ( l ' ) )  = 4ksT8(5- t'), (6) 

we obtain 

Now, letting to+ -00, we should obtain the observable equilibrium value 

This non-zero result is manifestly in disagreement with the Van Leeuwen theorem and 
must, therefore, be wrong. This is in fact related to the well known paradox that in a real 
space-time picture an electron in a magnetic field must execute a cyclotron orbit and 
hence contribute a diamagnetic moment, whereas the above theorem predicts a zero 
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value. The qualitative resolution of this paradox (see Pippard 1969) lies in the 
realisation that for a bounded system, the particle within an orbit diameter of the 
boundary must have its orbit intersect the boundary. This leads to skipping orbits in a 
sense counter to that of the cyclotron orbit of the particle in the bulk. This presumably 
gives exact cancellation. ‘The statistical mechanical treatment of Van Leeuwen 
obscures this subtle role of the boundary which it subsumes. Indeed, as is well known, 
the mean-squared displacement (1z(t)I2)o of our test particle grows as t for large t, even 
for non-zero B. and eventually as ergodicity demands, it must feel the effect of the 
boundary however remote (or equivalently, it must sense the confining potential 
however soft). Thus, even though the  physically macroscopic systems are practically 
unbounded, we must notionally introduce a confining potential and only at the end let 
the potential strength tend to zero. We shall now demonstrate this explicitly by 
introducing a confining potential $k(x2  + y 2 ) ,  where the strength k is arbitrarily small, 
but non-zero to begin with. It turns out that we can again take z o  = 0 without loss of 
generality. Now equation (3) is modified to 

where 

From equation (9) it can be verified, after some algebra, that ( m ~ ( t ) ) ~ )  indeed teiids to 
zero as to + -a, in conformity with the Van Leeuwen theorem. In point of fact one 
verifies that the order of the limits w + 0 and t o  + -cc is important, as anticipated 
earlier: 

lim 74 0. (10) 
\ 

lim ( m ( t ) ) , )  + 0, 

This is an exact result. Earlier real space-time treatments of this exact cancellation 
were essentially heuristic and athermil--there was 110 bath. A few words of explana- 
tion are now in order to see qualitatively why the magnetic moment vanishes in the 
presence of the confining parabolic potential where the skipping cycles do not occur as 
such. The cancellation is due presumably to the fact that the restoring force of the 
confining potential causes the guiding centre of the Larmor orbit to move in a sense 
counter to that of the Larmor orbit itself. This can be qualitatively seen from equation 
(3) by including the restoring force due to the parabolic potential and dropping the 
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damping and the concomitant fluctuating force terms. The resulting equation takes the 
form 

i’ = i w,i  - kt, 

which is an exactly solvable deterministic equation and displays the opposite directions 
of the motions of the guiding centre of the Larmor orbit and of the Larmor orbit itself. 

Thus, reassured, we pursue this approach further to treat the case when T is finite 
due to a stochastic birth-death process imposed on the particle history. In this case, 
however, it is not clear that we can set to = 0 without loss of generality, and so we keep it 
general. The stochastic birth-death process is mathematically realised through a 
probability densityf(zo, uo;  t -to) such that f ( z o ,  uo; t - to) d r o  duo dto is the probability 
that the particle under observation at time t was ‘born’ in the space-time velocity 
element dzo duo dto. The observable magnetic moment ( m ( t ) )  is then 

( m ( t ) )  = I,, I,, JtI=-m f ( z o ,  0 0 ;  t - to)(m(t)>o dzo duo dto. (11) 

Now, we make the reasonable assumption that at the time of birth ‘to’ the particle is 
equally likely to be produced in all directions, i.e. the velocity distribution at birth is at 
least isotropic and hence ~ ( z o ,  U O ;  t - to )  depends only on the magnitude uo of UO. This 
enables us to replace ( m  ( t ) )o  in equation (1 1) by its angular average ((m(t))o)ang over the 
directions of uo. It can then be readily verified that ( (m(t)Mang becomes independent of 
zo and is given by equation (9) again. More explicitly, this is due to the fact that zO 
occurs in the expression for ( m ( t ) )  only through the combination ( ~ o z o ) .  Since, 
however, we have assumed the initial velocity distribution to be isotropic, the average 
(iOzo) vanishes by symmetry. Thus equation (1 1) becomes 

where 

[Jnder very general conditions for the homogeneity of the stochastic process, we can 
make the Poissonian choice 

As is well known in the theory of stochastic processes any choice other than Poissonian 
necessarily implies memory. With this choice we obtain for the observed magnetic 
moment 
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where lz12 denotes initial velocity squared averaged over the distribution f 2 ( 2 ) 0 ) .  One 
can readily verify that the equipartition requirement km li!I2 + kBT as t + -CO gives 
lGl2 = 2kBT/m. Equation (15) holds for arbitrary field strength so long as the demag- 
netisation effects are ignored. 

First we note that in the limit of infinite lifetime, i.e. 7 = 1/ w o +  03, we recover the 
result that (m(t))+O. With w o  strictly greater than zero, we can let w + O ,  i.e. 
unbounded system, and obtain a much simpler expression for the orbital moment: 

A M Ja yannavar and N Kiimar 

- 

- 
For very short lifetime, i.e. w0+co, ( m ( t ) )  tends to zero, which is physically quite 
understandable. For 0 < WO<< wr, wc, i.e. large but finite lifetime, the weak-field 
diamagnetic susceptibility ,y per particle saturates at 

The limiting form in equation (17) can be given the following physical interpretation. 
As wr  increases, implying large frictional damping and concomitant fluctuating force, 
the motion of the particle becomes sufficiently randomised during the lifetime 1/ wo of 
the particle. The resulting loss of coherence presumably causes the reduction in the net 
magnetic moment as seen from equation (17), which has an overall dependence of the 
type ( w r +  w ~ ) - ~ .  Expressing w r =  r / m  in terms of the drift mobility p by making use of 
the Einstein-Stokes relation, we obtain 

kBTF2 1 
,y (per unit volume) = -4no - 

c 2  (1 t W " / W J 2 ,  

where no is the number density of particles. For no - 1019 ~ m - ~ ,  p - lo3 cm2 T1 s-l 
and T - 300 K, we obtain ,y = which is very large indeed. 

3. Discussion 

The foregoing treatment falls into two parts. The first part deals with the situation for 
which the Van Leeuwen theorem was originally envisaged. We are able to show 
explicitly the conceptually essential role played by the confinement in ensuring exact 
cancellation for which only heuristic arguments had been given so far. The second part 
is addressed to the case of a particle undergoing a birth-death process for which the 
theorem is not envisaged anyway. While it is gratifying that in the limit 7 + CO we 
recover the known result, what is unphysical is that the relevant timescale l / w o  is 
almost infinite for arbitrarily weak confinement (corresponding to the macroscopic size 
of the system in practice). In this sense the model is too ideal. We believe that in a real 
system the role of boundary is really played by the bulk imperfections like static 
inhomogeneities which are classically impenetrable and, of course, are not included in 
the Langevin equation. In such a case w may be effectively the reciprocal of the elastic 
mean free lifetime. If that is so, the condition for large diamagnetic susceptibility will be 
rather stringent, namely, w < W O  < w,. In indirect gap semiconductors, where electron- 
hole pair production-recombination requires phonons and hence depends sensitively 
on temperature and, of course, on compensation, the above condition may be realis- 
able. 
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